Q-

C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Electrical Machine – I

	Subject (Code: 4TE03EMC1	Branch: B.Tech (Electric	al)
	Semester	:: 3 Date: 02/04/2018	Time: 02:30 To 05:30	Marks: 70
	Instruction (1) U (2) I (3) I (4) A	ns: Jse of Programmable calculator & a nstructions written on main answer Draw neat diagrams and figures (if r Assume suitable data if needed.	any other electronic instrument is p book are strictly to be obeyed. necessary) at right places.	rohibited.
1		Attempt the following questions:	:	(14)
	a)	The sole purpose of a commutator (A) Increase output voltage (B) Reduce sparking at brushes (C) Provide smoother output	r in a d.c generator is to	
	b)	 (D) Convert the induced a.c. into a The critical resistance of the d.c.ge (A) Armature (B) Field (C) Load (D) brushes 	d.c. enerator is resistance of	
	c)	The commercial efficiency of a shi losses equallosses. (A) Constant (B) Stray (C) Iron (D) Friction and windage	unt generator is maximum when it	s variable
	d)	 The principle of operation of a 3 p (A) Synchronous motor (B) Repulsion-start induction moto (C) Transformer with a shorted see (D) Capacitor start, induction run 	ohase induction motor is most simil or condary motor	ar to that of
	e)	In a d.c.generator, the effect of arm (A) Reduce it (B) Distort it (C) Reverse it	mature reaction on the main pole flu	ıx is to

- (D) Both (a) and (b)
- **f**) No-load test on transformer is carried out to determine
 - (A) copper loss
 - (B) magnetising current

- (C) magnetising current and loss
- (D) efficiency of transformer
- g) Slip rings are usually made of
 - (A) copper
 - (B) carbon
 - (C) phosphor bronze
 - (D) aluminum
- **h**) D.C. shunt motors are used for driving
 - (A) trains
 - (B)cranes
 - (C)hoists
 - (D)machine tools
- i) How can the direction of rotation of a d.c. motor be reversed?
- **j**) What is the function of compensating winding?
- **k**) Explain the function of armature winding.
- **I)** Define the term: All day efficiency
- **m**) Define the term: voltage regulation
- **n**) Explain the function of commutator.

Attempt any four questions from Q-2 to Q-8

Q-2		Attempt all questions	(14)	
	(a)	Derive the E.M.F. Equation of D.C. generators.	(07)	
	(b)	Explain Swinburne's test to find the efficiency of a d. c. motor.	(07)	
Q-3		Attempt all questions		
	(a)	What is need of starter? Explain the construction and working of three point starter.	(07)	
	(b)	Explain the armature reaction in D. C. generator.	(07)	
Q-4		Attempt all questions (1		
-	(a)	Explain the different types of D.C. Generator.	(07)	
	(b)	Explain the Equivalent circuit of Transformer.	(07)	
Q-5		Attempt all questions		
-	(a)	Define the term "slip" of induction motor. Draw and Explain the torque-slip characteristics of a three phase induction motor.	(07)	
	(b)	Explain the Speed control of D.C Shunt Motor.	(07)	
0 (
Q-0		Attempt all questions	(14)	
Q-0	(a)	Attempt all questions A short-shunt compound generator delivers a load current of 30A at 220V, and has armature, series-field and shunt-field resistances of 0.05 Ω , 0.30 Ω and 200 Ω respectively. Calculate the induced e.m.f. and the armature current. Allow 1.0 V per brush for contact drop.	(14) (07)	
Q-0	(a) (b)	Attempt all questions A short-shunt compound generator delivers a load current of 30A at 220V, and has armature, series-field and shunt-field resistances of 0.05Ω , 0.30Ω and 200Ω respectively. Calculate the induced e.m.f. and the armature current. Allow 1.0 V per brush for contact drop. Explain the methods of improving Commutation in D.C. Generator.	(14) (07) (07)	
Q-6 Q-7	(a) (b)	Attempt all questions A short-shunt compound generator delivers a load current of 30A at 220V, and has armature, series-field and shunt-field resistances of 0.05Ω , 0.30Ω and 200Ω respectively. Calculate the induced e.m.f. and the armature current. Allow 1.0 V per brush for contact drop. Explain the methods of improving Commutation in D.C. Generator. Attempt all questions	(14) (07) (07) (14)	
Q-6 Q-7	(a) (b) (a)	Attempt all questions A short-shunt compound generator delivers a load current of 30A at 220V, and has armature, series-field and shunt-field resistances of 0.05Ω , 0.30Ω and 200Ω respectively. Calculate the induced e.m.f. and the armature current. Allow 1.0 V per brush for contact drop. Explain the methods of improving Commutation in D.C. Generator. Attempt all questions Explain the different losses in D.C.generator.	(14) (07) (07) (14) (07)	

Q-8 Attempt all questions

- (a) A 30kVA, 2400/120 V, 50 Hz transformer has a high voltage winding resistance (07) of 0.1 Ω and a leakage reactance of 0.22 Ω . The low voltage winding resistance is 0.035 Ω and the leakage reactance is 0.012 Ω . Find the equivalent winding resistance, reactance and impedance referred to the (i) high voltage side and (ii) the low voltage side.
- (b) Explain the Production of Rotating field of 3 Phase Supply for Induction Motor. (07)

